Month: June 2018

Can bacteria-slaying viruses defeat antibiotic-resistant infections?

Posted on

Phages like these studding an Escherichia coli bacterium target specific bacteria, complicating their use in medicine.
 
EYE OF SCIENCE/SCIENCE SOURCE

Can bacteria-slaying viruses defeat antibiotic-resistant infections? A new U.S. clinical center aims to find out

One piece of good news can make all the difference. In the fight against antibiotic-resistant infections, a decades-old approach based on bacteria-slaying viruses called phages has been sidelined by technical hurdles, dogged by regulatory confusion, and largely ignored by drug developers in the West. But 2 years ago, researchers at the University of California, San Diego (UCSD), used phages to knock out an infection that nearly killed a colleague. Propelled by that success and a handful of others since, UCSD is now launching a clinical center to refine phage treatments and help companies bring them to market.

A first in North America, the center will initially consist of 16 UCSD researchers and physicians. It aims to be a proving ground for a treatment that has long been available in parts of Eastern Europe, but that still lacks the support of rigorous clinical trials. “There have been just a ton of failures and false starts,” says Paul Bollyky, a microbiologist and physician at Stanford University Medical Center in Palo Alto, California, who studies phages. “The fact that a major American medical center is going to set up an ongoing enterprise around phage therapy … that’s kind of a game changer for the field, at least in the United States.”

Turning phages—found in soil, water, and sewage—into treatments isn’t straightforward. Because each of the millions of phage strains in nature targets a specific bacterium, putting them to use means finding the specific phages that attack the menace at hand. Still, clinical centers overseas, in Georgia and Poland, have reported encouraging results with phages over the years. And the rise of antibiotic-resistant infections has prompted a handful of U.S. companies and research centers to reconsider the approach.

The case that mobilized the UCSD team hit close to home. In 2015, UCSD psychologist Tom Patterson was airlifted home after a vacation in Egypt when a drug-resistant strain of the bacterium Acinetobacter baumannii invaded his pancreas. As available antibiotics failed and Patterson fell into a coma, his wife, UCSD epidemiologist Steffanie Strathdee, launched an international effort to find strains of phage that might save him. After treatment with a variety of phages donated by San Diego–based biotech AmpliPhi Biosciences, Texas A&M University, and the U.S. Navy, Patterson made a dramatic recovery.

“Everybody’s been talking about this case,” Bollyky says. “Not only did he survive the treatment, which can’t be taken for granted, but he also got better, and miraculously so.” Patterson received some of the phages intravenously—an approach considered risky because toxins from bacteria used to grow the phages could linger in the mixture. His recovery helped allay safety fears, and it turned Strathdee into a self-described “phage wrangler,” who helped match other patients with the right mixture of experimental phages. Since her husband’s recovery, the UCSD team has successfully cleared infections in five more people with phage cocktails, under a U.S. Food and Drug Administration (FDA) process designed for emergencies where no approved treatments are available.

But a string of anecdotes does little to answer key scientific questions: What is the safest and most effective way to administer phages? How well do phages target the site of infection? How quickly are bacteria likely to develop resistance? “Those are the kinds of things you have to ask in structured clinical trials,” says Robert Schooley, a UCSD physician and infectious disease researcher who treated Patterson and oversaw the other recent cases.

So he and Strathdee proposed the new clinical center, which will launch with a 3-year, $1.2 million grant from UCSD. The Center for Innovative Phage Applications and Therapeutics (IPATH) won’t manufacture any phage treatments itself, but it will collaborate with companies and academic groups outside UCSD on multicenter clinical trials. IPATH will initially focus on treating patients with chronic, drug-resistant infections related to organ transplants, implanted devices such as pacemakers or joint replacements, and cystic fibrosis. Schooley is discussing possible trials with a team at the National Institute of Allergy and Infectious Diseases, and with two companies that have provided phages to patients at UCSD: AmpliPhi and Adaptive Phage Therapeutics (APT), based in Gaithersburg, Maryland, which has licensed the Navy’s phage collection.

Running phages through modern clinical testing has proved difficult in the past. A European Union–sponsored trial known as PhagoBurn was all but derailed by a series of setbacks. “It was not an ideal trial, let me say it like that,” says Jean-Paul Pirnay, a bioengineer at Queen Astrid Military Hospital in Brussels, one of the partners in PhagoBurn. A key obstacle was the fact that the trial targeted burn wounds, which often harbor multiple bacterial infections. That made it hard to test the effects of a phage therapy aimed at just one species. Designed to include 220 patients, the trial ultimately recruited only 27, and it has not yet published its results.

The anticipated trials at UCSD, on the other hand, will focus on patients with a single, known bacterial infection, Schooley says. But he admits it will still be tricky to design trials that isolate the effect of phages without withholding other potentially beneficial treatments, including antibiotics. (Ultimately, Schooley and many others expect phages to work in tandem with antibiotics—not to replace them.)

IPATH collaborators will also have to navigate a drug approval system suited to more conventional treatments. Because a phage cocktail will often have to be custom-designed for an individual, regulatory agencies may not have a single product to evaluate for safety and efficacy. But after initial talks with FDA, Greg Merril, APT’s CEO, is confident the agency will be flexible. He plans to seek approval for an entire library of phages—about 100 for each bacterial species—from which doctors could create a cocktail of one to five phages for a patient.

In the meantime, Strathdee says the UCSD team plans to keep securing phages for individual cases under FDA’s emergency pathway. She and Schooley already get several inquiries a week from patients and families fighting drug-resistant infections. “We hope to not send people with superbugs away, but to welcome them with open arms,” she says. “Right now, they don’t have anywhere to go.”

Pirnay, whose team finds and formulates phages to treat infections related to battlefield injuries, has a piece of advice for the UCSD group: “Be careful not to create too high an expectancy with the public,” he says. “Even when you do not say that you will be able to treat everything, you create a demand with desperate patients.”

Voyage into the world of atoms

Posted on

This animation shows the structure of matter at smaller and smaller scales. Zooming into a human hair, we pass through hair cells, fibril structures, keratin molecules, carbon atoms, nuclei, neutrons, protons, and finally quarks.

The Standard Model explains how the basic building blocks of matter interact, governed by four fundamental forces. Find out more: http://home.cern/…/physi…/standard-model

Voyage into the world of atoms

This animation shows the structure of matter at smaller and smaller scales. Zooming into a human hair, we pass through hair cells, fibril structures, keratin molecules, carbon atoms, nuclei, neutrons, protons, and finally quarks.The Standard Model explains how the basic building blocks of matter interact, governed by four fundamental forces. Find out more: http://home.cern/about/physics/standard-modelVideo: Daniel Dominguez/CERN

Posted by CERN on Sunday, April 15, 2018

Physicists confirm the discovery of fifth force of nature

Posted on

UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

UCI physicists confirm possible discovery of fifth force of nature
“If confirmed by further experiments, this discovery of a possible fifth force would completely change our understanding of the universe,” says UCI professor of physics & astronomy Jonathan Feng, including what holds together galaxies such as this spiral one, called NGC 6814. ESA/Hubble & NASA; Acknowledgement: Judy Schmidt
Irvine, Calif., August 15, 2016 – Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according to a paper published in the journal Physical Review Letters by theoretical physicists at the University of California, Irvine.

 

“If true, it’s revolutionary,” said Jonathan Feng, professor of physics & astronomy. “For decades, we’ve known of four fundamental forces: gravitation, electromagnetism, and the strong and weak nuclear forces. If confirmed by further experiments, this discovery of a possible fifth force would completely change our understanding of the universe, with consequences for the unification of forces and dark matter.”

The UCI researchers came upon a mid-2015 study by experimental nuclear physicists at the Hungarian Academy of Sciences who were searching for “dark photons,” particles that would signify unseen dark matter, which physicists say makes up about 85 percent of the universe’s mass. The Hungarians’ work uncovered a radioactive decay anomaly that points to the existence of a light particle just 30 times heavier than an electron.

“The experimentalists weren’t able to claim that it was a new force,” Feng said. “They simply saw an excess of events that indicated a new particle, but it was not clear to them whether it was a matter particle or a force-carrying particle.”

The UCI group studied the Hungarian researchers’ data as well as all other previous experiments in this area and showed that the evidence strongly disfavors both matter particles and dark photons. They proposed a new theory, however, that synthesizes all existing data and determined that the discovery could indicate a fifth fundamental force. Their initial analysis was published in late April on the public arXiv online server, and a follow-up paper amplifying the conclusions of the first work was released Friday on the same website.

The UCI work demonstrates that instead of being a dark photon, the particle may be a “protophobic X boson.” While the normal electric force acts on electrons and protons, this newfound boson interacts only with electrons and neutrons – and at an extremely limited range. Analysis co-author Timothy Tait, professor of physics & astronomy, said, “There’s no other boson that we’ve observed that has this same characteristic. Sometimes we also just call it the ‘X boson,’ where ‘X’ means unknown.”

Feng noted that further experiments are crucial. “The particle is not very heavy, and laboratories have had the energies required to make it since the ’50s and ’60s,” he said. “But the reason it’s been hard to find is that its interactions are very feeble. That said, because the new particle is so light, there are many experimental groups working in small labs around the world that can follow up the initial claims, now that they know where to look.”

Like many scientific breakthroughs, this one opens entirely new fields of inquiry.

One direction that intrigues Feng is the possibility that this potential fifth force might be joined to the electromagnetic and strong and weak nuclear forces as “manifestations of one grander, more fundamental force.”

Citing physicists’ understanding of the standard model, Feng speculated that there may also be a separate dark sector with its own matter and forces. “It’s possible that these two sectors talk to each other and interact with one another through somewhat veiled but fundamental interactions,” he said. “This dark sector force may manifest itself as this protophobic force we’re seeing as a result of the Hungarian experiment. In a broader sense, it fits in with our original research to understand the nature of dark matter.”

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 30,000 students and offers 192 degree programs. It’s located in one of the world’s safest and most economically vibrant communities and is Orange County’s second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

 

Physicists confirm the discovery of fifth force of nature

Physicists confirm the discovery of fifth force of nature.

Posted by Hashem Al-Ghaili on Wednesday, June 13, 2018

Compound made inside human body stops viruses from replicating

Posted on

Date: June 20, 2018
Source: Penn State
Summary:
A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals that is known to have antiviral effects on viruses such as West Nile, hepatitis C, rabies, and HIV. This discovery could allow researchers to develop a drug that could act as a broad-spectrum therapy for a range of viruses, including Zika.
 FULL STORY

A structural model of viperin a naturally occurring enzyme in humans that is known to have antiviral effects on viruses such as West Nile, hepatitis C, rabies, and HIV. A new study led by researchers from Penn State and the Albert Einstein College of Medicine reveals the mode of action of viperin, which facilitates an important reaction that results in the production of ddhCTP, a molecule that prevents viruses from copying their genetic material.
Credit: David W. Gohara, Ph.D

The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals that is known to have antiviral effects on a wide variety of viruses, including West Nile, hepatitis C, rabies, and HIV.

The enzyme facilitates a reaction that produces the molecule ddhCTP, which prevents viruses from copying their genetic material and thus from multiplying. This discovery could allow researchers to develop a drug that induces the human body to produce this molecule and could act as a broad-spectrum therapy for a range of viruses. A paper describing the study appears online on June 20th in the journal Nature.

“We knew viperin had broad antiviral effects through some sort of enzymatic activity, but other antivirals use a different method to stop viruses,” said Craig Cameron, professor and holder of the Eberly Chair in Biochemistry and Molecular Biology at Penn State and an author of the study. “Our collaborators at the Albert Einstein College of Medicine, led by senior authors Tyler Grove and Steven Almo, revealed that viperin catalyzes an important reaction that results in the creation of a molecule called ddhCTP. Our team at Penn State then showed the effects of ddhCTP on a virus’s ability to replicate its genetic material. Surprisingly, the molecule acts in a similar manner to drugs that were developed to treat viruses like HIV and hepatitis C. With a better understanding of how viperin prevents viruses from replicating, we hope to be able to design better antivirals.”

A virus typically co-opts the host’s genetic building blocks to copy its own genetic material, incorporating molecules called nucleotides into new strands of RNA. The molecule ddhCTP mimics these nucleotide building blocks and becomes incorporated into the virus’s genome. Once incorporated into a new strand of the virus’s RNA, these “nucleotide analogs” prevent an enzyme called RNA polymerase from adding more nucleotides to the strand, thus preventing the virus from making new copies of its genetic material.

“Long ago, the paradigm was that in order to kill a virus, you had to kill the infected cell,” said Cameron. “Such a paradigm is of no use when the virus infects an essential cell type with limited capacity for replenishment. The development of nucleotide analogs that function without actually killing the infected cell changed everything.”

Most nucleotide analogs on the market are humanmade, but there are often complications with using these synthetic drugs. Because nucleotides are used by many proteins and enzymes of the cell, numerous opportunities exist for analogs to interfere with normal cellular function.

“The major obstacle to developing therapeutically useful antiviral nucleotides is unintended targets,” said Jamie Arnold, associate research professor of biochemistry and molecular biology at Penn State and an author of the paper. “For example, a few years ago we discovered that a nucleotide analog under development for treatment of hepatitis C could interfere with the production of RNA in mitochondria, subcellular organelles important for energy production in the patient’s own cells. That meant people with mitochondrial dysfunction are predisposed to any negative effects of this unintended interference.”

The molecule ddhCTP, however, does not appear to have any unintended targets. The research team suspects that the natural origin of the compound within the human body necessitates that it be nontoxic.

“Unlike many of our current drugs, ddhCTP is encoded by the cells of humans and other mammals,” said Cameron. “We have been synthesizing nucleotide analogs for years, but here we see that nature beat us to the punch and created a nucleotide analog that can deal with a virus in living cells and does not exhibit any toxicity to date. If there’s something out there that’s going to work, nature has probably thought of it first. We just have to find it.”

To verify the effectiveness of ddhCTP, the research team showed that the molecule inhibited the RNA polymerases of dengue virus, West Nile virus and Zika virus, which are all in a group of viruses called flaviviruses. Then they investigated whether the molecule halted replication of Zika virus in living cells.

“The molecule directly inhibited replication of three different strains of Zika virus,” said Joyce Jose, assistant professor of biochemistry and molecular biology at Penn State and an author of the paper. “It was equally effective against the original strain from 1947 as it was against two strains from the recent 2016 outbreak. This is particularly exciting because there are no known treatments for Zika. This study highlights a new avenue of research into natural compounds like ddhCTP that could be used in future treatments.”

Together, these results demonstrate promising antiviral effects of ddhCTP on a variety of flaviviruses. However, the RNA polymerases of human rhinovirus and poliovirus, which are in a group called picornaviruses, were not sensitive to the molecule. The researchers plan to investigate the polymerase structures of these viruses to better understand why flaviviruses are sensitive to ddhCTP while the picornaviruses tested in this study are not. This investigation may also offer insights into how flaviviruses might develop resistance to the molecule.

“Development of resistance to an antiviral agent is always an issue,” said Cameron, “Having some idea of how resistance happens, or being able to prevent it from happening, will be critical if this is to be used as a broad-spectrum therapy.”


Story Source:

Materials provided by Penn State. Note: Content may be edited for style and length.


Journal Reference:

  1. Anthony S. Gizzi, Tyler L. Grove, Jamie J. Arnold, Joyce Jose, Rohit K. Jangra, Scott J. Garforth, Quan Du, Sean M. Cahill, Natalya G. Dulyaninova, James D. Love, Kartik Chandran, Anne R. Bresnick, Craig E. Cameron, Steven C. Almo. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature, 2018; DOI: 10.1038/s41586-018-0238-4

13 medical advances that are changing lives

Posted on

 

13 Medical Advances That Are Changing Lives

Thirteen medical advances that are changing lives.

Posted by Tech Insider on Friday, June 15, 2018

 

Tripling the energy storage of lithium-ion batteries

Posted on

 Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries

Date:June 14, 2018
Source:DOE/Brookhaven National Laboratory

 

          Summary:

Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries.

 

          FULL STORY


Substituting the cathode material with oxygen and cobalt prevents lithium from breaking chemical bonds and preserves the material’s structure.
Credit: Brookhaven National Laboratory 

As the demand for smartphones, electric vehicles, and renewable energy continues to rise, scientists are searching for ways to improve lithium-ion batteries — the most common type of battery found in home electronics and a promising solution for grid-scale energy storage. Increasing the energy density of lithium-ion batteries could facilitate the development of advanced technologies with long-lasting batteries, as well as the widespread use of wind and solar energy. Now, researchers have made significant progress toward achieving that goal.

A collaboration led by scientists at the University of Maryland (UMD), the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, and the U.S. Army Research Lab have developed and studied a new cathode material that could triple the energy density of lithium-ion battery electrodes. Their research was published on June 13 in Nature Communications.

“Lithium-ion batteries consist of an anode and a cathode,” said Xiulin Fan, a scientist at UMD and one of the lead authors of the paper. “Compared to the large capacity of the commercial graphite anodes used in lithium-ion batteries, the capacity of the cathodes is far more limited. Cathode materials are always the bottleneck for further improving the energy density of lithium-ion batteries.”

Scientists at UMD synthesized a new cathode material, a modified and engineered form of iron trifluoride (FeF3), which is composed of cost-effective and environmentally benign elements — iron and fluorine. Researchers have been interested in using chemical compounds like FeF3 in lithium-ion batteries because they offer inherently higher capacities than traditional cathode materials.

“The materials normally used in lithium-ion batteries are based on intercalation chemistry,” said Enyuan Hu, a chemist at Brookhaven and one of the lead authors of the paper. “This type of chemical reaction is very efficient; however, it only transfers a single electron, so the cathode capacity is limited. Some compounds like FeF3 are capable of transferring multiple electrons through a more complex reaction mechanism, called a conversion reaction.”

Despite FeF3’s potential to increase cathode capacity, the compound has not historically worked well in lithium-ion batteries due to three complications with its conversion reaction: poor energy efficiency (hysteresis), a slow reaction rate, and side reactions that can cause poor cycling life. To overcome these challenges, the scientists added cobalt and oxygen atoms to FeF3 nanorods through a process called chemical substitution. This allowed the scientists to manipulate the reaction pathway and make it more “reversible.”

“When lithium ions are inserted into FeF3, the material is converted to iron and lithium fluoride,” said Sooyeon Hwang, a co-author of the paper and a scientist at Brookhaven’s Center for Functional Nanomaterials (CFN). “However, the reaction is not fully reversible. After substituting with cobalt and oxygen, the main framework of the cathode material is better maintained and the reaction becomes more reversible.”

To investigate the reaction pathway, the scientists conducted multiple experiments at CFN and the National Synchrotron Light Source II (NSLS-II) — two DOE Office of Science User Facilities at Brookhaven.

First at CFN, the researchers used a powerful beam of electrons to look at the FeF3 nanorods at a resolution of 0.1 nanometers — a technique called transmission electron microscopy (TEM). The TEM experiment enabled the researchers to determine the exact size of the nanoparticles in the cathode structure and analyze how the structure changed between different phases of the charge-discharge process. They saw a faster reaction speed for the substituted nanorods.

“TEM is a powerful tool for characterizing materials at very small length scales, and it is also able to investigate the reaction process in real time,” said Dong Su, a scientist at CFN and a co-corresponding author of the study. “However, we can only see a very limited area of the sample using TEM. We needed to rely on the synchrotron techniques at NSLS-II to understand how the whole battery functions.”

At NSLS-II’s X-ray Powder Diffraction (XPD) beamline, scientists directed ultra-bright x-rays through the cathode material. By analyzing how the light scattered, the scientists could “see” additional information about the material’s structure.

“At XPD, we conducted pair distribution function (PDF) measurements, which are capable of detecting local iron orderings over a large volume,” said Jianming Bai, a co-author of the paper and a scientist at NSLS-II. “The PDF analysis on the discharged cathodes clearly revealed that the chemical substitution promotes electrochemical reversibility.”

Combining highly advanced imaging and microscopy techniques at CFN and NSLS-II was a critical step for assessing the functionality of the cathode material.

“We also performed advanced computational approaches based on density functional theory to decipher the reaction mechanism at an atomic scale,” said Xiao Ji, a scientist at UMD and co-author of the paper. “This approach revealed that chemical substitution shifted the reaction to a highly reversible state by reducing the particle size of iron and stabilizing the rocksalt phase.”Scientists at UMD say this research strategy could be applied to other high energy conversion materials, and future studies may use the approach to improve other battery systems.


Story Source:

Materials provided by DOE/Brookhaven National Laboratory. Note: Content may be edited for style and length.


Journal Reference:

Xiulin Fan, Enyuan Hu, Xiao Ji, Yizhou Zhu, Fudong Han, Sooyeon Hwang, Jue Liu, Seongmin Bak, Zhaohui Ma, Tao Gao, Sz-Chian Liou, Jianming Bai, Xiao-Qing Yang, Yifei Mo, Kang Xu, Dong Su, Chunsheng Wang. High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nature Communications, 2018; 9 (1) DOI: 10.1038/s41467-018-04476-2


New type of photosynthesis discovered

Posted on

Date:June 14, 2018
Source:Imperial College London
Summary:
The discovery changes our understanding of the basic mechanism of photosynthesis and should rewrite the textbooks. It will also tailor the way we hunt for alien life and provide insights into how we could engineer more efficient crops that take advantage of longer wavelengths of light.
FULL STORY

Colony of Chroococcidiopsis-like cells where the different colours represent photosynthesis driven by chlorophyll-a (magenta) and chlorophyll-f (yellow).
Credit: Dennis Nuernberg

The discovery changes our understanding of the basic mechanism of photosynthesis and should rewrite the textbooks.

It will also tailor the way we hunt for alien life and provide insights into how we could engineer more efficient crops that take advantage of longer wavelengths of light.

The discovery, published today in Science, was led by Imperial College London, supported by the BBSRC, and involved groups from the ANU in Canberra, the CNRS in Paris and Saclay and the CNR in Milan.

The vast majority of life on Earth uses visible red light in the process of photosynthesis, but the new type uses near-infrared light instead. It was detected in a wide range of cyanobacteria (blue-green algae) when they grow in near-infrared light, found in shaded conditions like bacterial mats in Yellowstone and in beach rock in Australia.

As scientists have now discovered, it also occurs in a cupboard fitted with infrared LEDs in Imperial College London.

Photosynthesis beyond the red limit

The standard, near-universal type of photosynthesis uses the green pigment, chlorophyll-a, both to collect light and use its energy to make useful biochemicals and oxygen. The way chlorophyll-a absorbs light means only the energy from red light can be used for photosynthesis.

Since chlorophyll-a is present in all plants, algae and cyanobacteria that we know of, it was considered that the energy of red light set the ‘red limit’ for photosynthesis; that is, the minimum amount of energy needed to do the demanding chemistry that produces oxygen. The red limit is used in astrobiology to judge whether complex life could have evolved on planets in other solar systems.

However, when some cyanobacteria are grown under near-infrared light, the standard chlorophyll-a-containing systems shut down and different systems containing a different kind of chlorophyll, chlorophyll-f, takes over.

Until now, it was thought that chlorophyll-f just harvested the light. The new research shows that instead chlorophyll-f plays the key role in photosynthesis under shaded conditions, using lower-energy infrared light to do the complex chemistry. This is photosynthesis ‘beyond the red limit’.

Lead researcher Professor Bill Rutherford, from the Department of Life Sciences at Imperial, said: “The new form of photosynthesis made us rethink what we thought was possible. It also changes how we understand the key events at the heart of standard photosynthesis. This is textbook changing stuff.”

Preventing damage by light

Another cyanobacterium, Acaryochloris, is already known to do photosynthesis beyond the red limit. However, because it occurs in just this one species, with a very specific habitat, it had been considered a ‘one-off’. Acaryochloris lives underneath a green sea-squirt that shades out most of the visible light leaving just the near-infrared.

The chlorophyll-f based photosynthesis reported today represents a third type of photosynthesis that is widespread. However, it is only used in special infrared-rich shaded conditions; in normal light conditions, the standard red form of photosynthesis is used.

It was thought that light damage would be more severe beyond the red limit, but the new study shows that it is not a problem in stable, shaded environments.

Co-author Dr Andrea Fantuzzi, from the Department of Life Sciences at Imperial, said: “Finding a type of photosynthesis that works beyond the red limit changes our understanding of the energy requirements of photosynthesis. This provides insights into light energy use and into mechanisms that protect the systems against damage by light.”

These insights could be useful for researchers trying to engineer crops to perform more efficient photosynthesis by using a wider range of light. How these cyanobacteria protect themselves from damage caused by variations in the brightness of light could help researchers discover what is feasible to engineer into crop plants.

Textbook-changing insights

More detail could be seen in the new systems than has ever been seen before in the standard chlorophyll-a systems. The chlorophylls often termed ‘accessory’ chlorophylls were actually performing the crucial chemical step, rather than the textbook ‘special pair’ of chlorophylls in the centre of the complex.

This indicates that this pattern holds for the other types of photosynthesis, which would change the textbook view of how the dominant form of photosynthesis works.

Dr Dennis Nürnberg, the first author and initiator of the study, said: “I did not expect that my interest in cyanobacteria and their diverse lifestyles would snowball into a major change in how we understand photosynthesis. It is amazing what is still out there in nature waiting to be discovered.”

Peter Burlinson, lead for frontier bioscience at BBSRC — UKRI says, “This is an important discovery in photosynthesis, a process that plays a crucial role in the biology of the crops that feed the world. Discoveries like this push the boundaries of our understanding of life and Professor Bill Rutherford and the team at Imperial should be congratulated for revealing a new perspective on such a fundamental process.”


Story Source:

Materials provided by Imperial College London. Note: Content may be edited for style and length.


Journal Reference:

  1. Dennis J. Nürnberg, Jennifer Morton, Stefano Santabarbara, Alison Telfer, Pierre Joliot, Laura A. Antonaru, Alexander V. Ruban, Tanai Cardona, Elmars Krausz, Alain Boussac, Andrea Fantuzzi, A. William Rutherford. Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science, 2018; 360 (6394): 1210 DOI: 10.1126/science.aar8313

Cell-like nanorobots clear bacteria and toxins from blood

Posted on

Date:May 31, 2018

Source:University of California – San Diego

Summary:Engineers have developed tiny ultrasound-powered robots that can swim through blood, removing harmful bacteria along with the toxins they produce. These proof-of-concept nanorobots could one day offer a safe and efficient way to detoxify and decontaminate biological fluids.

FULL STORY

Engineers at the University of California San Diego have developed tiny ultrasound-powered robots that can swim through blood, removing harmful bacteria and the toxins they produce.
Credit: UC San Diego Jacobs School of Engineering

Engineers at the University of California San Diego have developed tiny ultrasound-powered robots that can swim through blood, removing harmful bacteria along with the toxins they produce. These proof-of-concept nanorobots could one day offer a safe and efficient way to detoxify and decontaminate biological fluids.

Researchers built the nanorobots by coating gold nanowires with a hybrid of platelet and red blood cell membranes. This hybrid cell membrane coating allows the nanorobots to perform the tasks of two different cells at once — platelets, which bind pathogens like MRSA bacteria (an antibiotic-resistant strain of Staphylococcus aureus), and red blood cells, which absorb and neutralize the toxins produced by these bacteria. The gold body of the nanorobots responds to ultrasound, which gives them the ability to swim around rapidly without chemical fuel. This mobility helps the nanorobots efficiently mix with their targets (bacteria and toxins) in blood and speed up detoxification.

The work, published May 30 in Science Robotics, combines technologies pioneered by Joseph Wang and Liangfang Zhang, professors in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering. Wang’s team developed the ultrasound-powered nanorobots, and Zhang’s team invented the technology to coat nanoparticles in natural cell membranes.

“By integrating natural cell coatings onto synthetic nanomachines, we can impart new capabilities on tiny robots such as removal of pathogens and toxins from the body and from other matrices,” said Wang. “This is a proof-of-concept platform for diverse therapeutic and biodetoxification applications.”

“The idea is to create multifunctional nanorobots that can perform as many different tasks at once,” said co-first author Berta Esteban-Fernández de Ávila, a postdoctoral scholar in Wang’s research group at UC San Diego. “Combining platelet and red blood cell membranes into each nanorobot coating is synergistic — platelets target bacteria, while red blood cells target and neutralize the toxins those bacteria produce.”

The coating also protects the nanorobots from a process known as biofouling — when proteins collect onto the surface of foreign objects and prevent them from operating normally.

Researchers created the hybrid coating by first separating entire membranes from platelets and red blood cells. They then applied high-frequency sound waves to fuse the membranes together. Since the membranes were taken from actual cells, they contain all their original cell surface protein functions. To make the nanorobots, researchers coated the hybrid membranes onto gold nanowires using specific surface chemistry.

The nanorobots are about 25 times smaller than the width of a human hair. They can travel up to 35 micrometers per second in blood when powered by ultrasound. In tests, researchers used the nanorobots to treat blood samples contaminated with MRSA and their toxins. After five minutes, these blood samples had three times less bacteria and toxins than untreated samples.

The work is still at an early stage. Researchers note that the ultimate goal is not to use the nanorobots specifically for treating MRSA infections, but more generally for detoxifying biological fluids. Future work includes tests in live animals. The team is also working on making nanorobots out of biodegradable materials instead of gold.

Story Source:

Materials provided by University of California – San DiegoNote: Content may be edited for style and length.


Journal Reference:

  1. Berta Esteban-Fernández de Ávila, Pavimol Angsantikul, Doris E. Ramírez-Herrera, Fernando Soto, Hazhir Teymourian, Diana Dehaini, Yijie Chen, Liangfang Zhang, Joseph Wang. Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxinsScience Robotics, 2018; 3 (18): eaat0485 DOI: 10.1126/scirobotics.aat0485

Creature that can regenerate its brain and resist cancer

Posted on

Meet the creature that can regenerate its brain and resist cancer

Meet the creature that can regenerate its brain and resist cancer

Meet the creature that can regenerate its brain and resist cancer.

Posted by Hashem Al-Ghaili on Friday, April 20, 2018

Omega-3 fatty acids to make Brain function properly

Posted on

Your brain needs Omega-3 fatty acids to function properly

Your brain needs Omega-3 fatty acids to function properly

Your brain needs Omega-3 fatty acids to function properly.

Posted by Hashem Al-Ghaili on Thursday, April 19, 2018